Electroporation

Weaver (2000) IEEE Trans Plasma Sci, 28: 24–33.

In Chapter 9 of Intermediate Physics for Medicine and Biology, Russ Hobbie and I mention electroporation.

The citation is to an article by James Weaver

The abstract to the paper is given below.

Electroporation occurs for transmembrane potentials of a few hundred millivolts, which is only a few times the normal resting potential. I find it amazing that normal resting cells can are so precariously close to electroporating spontaneously.

One of the most interesting uses of electroporation is transfection: the process of introducing DNA into a cell using a method other than viral infection. This could be used in an experiment in which DNA for a particular gene is transfected into many host cells. If an electric shock is not too violent, the pores created during electroporation will close over several seconds, allowing the cell to then continue its normal function while containing a foreign strand of DNA.

During defibrillation of the heart, the shock can be strong enough to damage or kill cardiac cells. One mechanism for cell injury during electrocution is electroporation followed by entry of extracellular ions such as Ca^++that can kill a cell. This raises the possibility of using electroporation to treat cancer by irreversibly killing tumor cells.

Electroporation-based technologies and treatments.

Originally published at http://hobbieroth.blogspot.com.

--

--

Professor of Physics at Oakland University and coauthor of the textbook Intermediate Physics for Medicine and Biology.

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
Brad Roth

Professor of Physics at Oakland University and coauthor of the textbook Intermediate Physics for Medicine and Biology.